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By hypothesis, ap < bp. That is, the first multiple of p in the sequence a, a - 
1,..., 1 will occur not later than the first multiple of p in the sequence b, b - 
1..., b-a + 1. Thus a(p) > ,8(p). But if p > a, then a(p) = 0. So, 8(p) = 0 
also, and neither A nor B is divisible by p. 

We have 

B E (pk)- E(pk) b - = 1-1 pk=l k=1 a A p<a 

Denoting by K(p) the exponent of the highest power of p for which /3(pk) > O we 
get 

E (/3(pk) _ a(pk)) = 1(p) - a(p) + ? (#(pk) ()pk)) 
k=l k=2 

00 (K(p) 

- E a(p") F 1 =K(p)-1. 
k =tc( p) +1l k=2 

Therefore 
B 

|l 
A p a 

or put in another way 

(b- a+ 1) ... (b- 1)b 12 ...(a - 1)a 
[l P(P) i r 

p a p<a 

Here, after factoring, there remain in the right-hand side exactly a - r(a) factors 
each at most a, and in the left-hand side at least a - 'r(a) such factors which are 
> b - a + 1. Since b > 2a, b - a + 1 > a + 1 > a, so we have a contradiction. 
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1. Introduction. An effective and much used method for introducing students to 
a new mathematical topic (e.g., modern algebra) is to pick some important subtopic 
(say, groups) and then present a discussion of the simplest or most familiar special 
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case (for example, the integers). Applying this doctrine to topology, it is clear that 
the study of manifolds is a very central subtopic aind the simplest special case is 
surely that of 1-dimensional manifolds. The "classification theorem" of our title 
says in effect that 1-manifolds are not only simple but they are also familiar, being' 
in fact nothing more than circles or intervals. The theorem itself is probably no 
great surprise. It is however important and useful in at least one approach to 
topology in obtaining some of the deeper results connected with fixed point theory. 
Further, the proof of the theorem is both instructive and nontrivial. It seemed 
worthwhile, therefore, for pedagogical reasons to present the detailed treatment 
which follows. 

This exposition was motivated by recent experience in trying to teach courses in 
algebraic and differential topology at the advanced undergraduate level. These 
subjects, it seems to me, present some special difficulties not present in other 
courses. Consider, for example, courses in modern algebra or integration theory or 
point-set topology. In these areas the subject matter has become quite standardized, 
there are numerous texts that treat the material, and it is possible to get down to 
business quite rapidly and start presenting some of the important results. 

In the topology courses, on the other hand, it seems that no matter what 
approach one takes it is necessary to do a fair amount of hard work before one can 
get to the meat of the subject, and I found many of my students were not prepared 
for this from their experiences in other courses. The problem becomes particularly 
acute if one demands the same degree of rigor and precision as in, say, a point-set 
topology course. On the other hand, if in order to "get somewhere" one takes a 
more relaxed, informal approach, many students become unsure as to when a 
careful argument is needed and when a wave of the hands is enough. 

I certainly have no ready solution for this dilemma which may well be inherent in 
the nature of the subject itself, but I do want to propose a way of at least getting off 
to a good start. My thesis is that the problem of classifying all 1-dimensional 
manifolds provides an excellent bridge between the pure point-set ideas which the 
students are presumably already familiar with and the new combinatorial material 
to which they are being introduced. Further, the result can be derived completely 
rigorously without taking an inordinate amount of time. 

Here are some other reasons for working through the 1-manifold theorem: 
1. A number of undergraduate texts present the classifications of 2-manifolds at 

an early stage. It seems rather natural to do the easier 1-manifold theorem first as a 
sort of warm-up. 

2. The classification theorem represents a typical example of a theorem which 
adduces a global conclusion from local hypotheses, i.e., knowing what a space looks 
like in the neighborhood of each of its points enables one to conclude exactly what 
it is "in the large." Such theorems, of course, are central in many branches of 
geometry and analysis. 

3. The 1-manifold theorem is perhaps not so important in the development of 
algebraic topology, but it plays an absolutely pivotal role in differential topology as 
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presented in the famous exposition of Milnor [3] based on the work of Hirsch [2] on 
the Brouwer fixed-i polnt theorem. 

4. One might say that 1-manifolds themselves are not very exciting. There are 
only four connected ones (manifolds in this paper will always include manifolds 
with boundary) and they are the obvious ones. I claim, however, that the proof of 
this fact is interesting because it requires the use of the Hausdorff separation axiom 
and it is precisely at the point where this axiom is used that the combinatorial 
aspect of the problem becomes apparent. I am referring to Proposition 1 of the 
presentation to follow, and its corollary. 

I should remark that proofs of the 1-manifold theorem in the smooth case are 
given both by Milnor [3] and by Guillemin and Pollack [1] but both of these proofs 
make use of differentiability. The proof for the topological case which is presented 
here is not to my knowledge presented in any text. In fact, I have not been able to 
find anyone who was able to tell when the theorem was first proved or by whom, 
and I would be most interested in any information on this matter. In any case I 
don't imagine any proof of the result can be very different from the one presented 
here. 

I have organized the material in the form of a take-home exam because the topic 
seems ideally suited for this. In fact, I have tried to arrange things so that a person 
teaching an undergraduate topology course could use this exposition directly as it 
stands. I even think the material would be suitable for use following the well-known 
R. L. Moore method in which all proofs are presented in class by the students. The 
instructor may wish to conduct a somewhat shorter exercise by considering only the 
case of manifolds without boundary. I have organized the proofs into a series of 
lemmas and propositions and have provided hints with the purpose of bringing the 
work to what I consider the appropriate level for upper division undergraduate 
math majors. I have not included proofs but would be glad, upon request, to send 
my own set of answers to anyone interested. 

2. The Theorem. It will be assumed in what follows that the reader is familiar 
with standard point set topology and the elementary topological properties of the 
real numbers, specifically, that connected subsets are intervals, that homeomor- 
phisms between intervals are monotonic, and that open subsets of the reals are 
unions of disjoint open intervals. 

DEFINITION. A 1-manifold is a second countable Hausdorff topological space X 
such that 

X can be covered by open sets each of which is homeomorphic either to the 
open interval (0, 1) or the half-open interval [0, 1). Sets of the first type will 

(M) be called 0-sets, of the second type H-sets, of either type I-sets, and the 
corresponding homeomorphisms to these intervals will be called 0-charts, 
H-charts, and I-charts, respectively. If X can be covered by 0-sets it is a 
manifold without boundary, otherwise it is a manifold with boundary. 
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CLASSIFICATION THEOREM. There are exactly four connected 1-manifolds (up to 
homeomorphism) and they are given by the following table: 

Without boundary With boundary 
Compact a circle a closed interval 

Non-compact an open interval a half-open interval 

PROPOSITION 0. Each of the four spaces of the table above is a 1-manifold. 

We next want to show the necessity of the Hausdorff Axiom. 

EXAMPLE 1. Let X = (0,1) U { p} where p is a singleton. A basis for the open 
sets of X are all open sets of (0, 1) plus all sets of the form (U - {1/2}) u { p} 
where U is open in (0,1) and 1/2 E U. Prove that X is a Tl-space which satisfies 
condition (M) but is not Hausdorff. 

From here on U and V will stand for I-sets in a 1-manifold and 0 and 4 will be 
associated I-charts. 

LEMMA. Suppose U n V and U - V are nonempty and let (xn) be a sequence in 
U n V converging to x in U - V. Then the sequence 42(xn) has no limit point in 
+(V). 

Hint: Use the Hausdorff property. 

We say that U and V overlap if U n V, U - V and V - U are nonempty. 

DEFINITION. An open subinterval of (0, 1) is lower if it is of the form (0, b) and 
upper if it is of the form (a, 1). A subinterval which is either upper or lower is 
called outer. It is easy to see that an open interval in (0, 1) is outer if and only if it 
contains a sequence with no limit point in (0, 1). Similarly, in [0, 1), a subinterval is 
called upper and outer if it is of the form (a, 1). (There are, by definition, no lower 
open subintervals of [0,1).) An open subinterval of [0,1) is outer if and only if it 
contains a sequence with no limit point in [0,1). 

PROPOSITION 1. If U and V overlap and W is a component of U fl V, then +(W) 
and 42(W) are outer intervals. 

Hint: Note that +(W) is a proper subinterval of 4(U). Using the lemma show 
that ?(W) is an open interval. Then construct an appropriate sequence in 4(W) 
and use the lemma again. 

COROLLARY. If U and V are I-sets, then U n V has at most two components. If 
either U or V is an H-set, then U n V is connected. 

PROPOSITION 2. If X is connected and U n V has two components, then X is a 
circle. 
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Hints: (a) Let the components be Z and W and choose 0-mappings 4, and 4 so 
that + (W) and { (W) are lower and + (Z) and + (Z) are upper. 

(b) Let a = sup + (W), a' = inf ? (Z), and b = sup + (W), b' inf + (Z). Let f 
map [0, 1] to the unit square by a piecewise linear mapping with 

f(0) = (0,0), f(a) = (1,0), f(a') = (1,1), f(1) = (0,1). 

Let g map [b, b'] linearly with g(b) (0, 0), g(b') = (0,1). Define iq on U U V by 
,q(x) = f o O(x) for x e U and 7(x)= g o (x) for x e V - U. 

(c) Prove that - is a homeomorphism of X onto the unit square using compact- 
ness of U U V and connectedness of X. 

PROPOSITION 3. Hypotheses: U and V overlap and U n V is connected. Conclu- 
sion: (i) If U and V are 0-sets, so is U U V. 

(ii) If U is an H-set and V an 0-set, then U U V is an H-set. 
(iii) If U and V are H-sets, then U U V = X and X is a closed interval. 

Hint: Letting W = U nr V choose 4, and 4 so that + (W) and +(W) are upper 
and let b = inf + (W); define X on U U V by q(x) = +(x) for x E U and -(X) = 
1 +b-4,(x)forxe V- U. 

All right; now give the proof of the Classification Theorem for the compact case. 
(Hint: Use induction on the number of sets in a finite open covering.) 

For the noncompact case we must use separability of the space C, for there exist 
nonseparable Hausdorff 1-manifolds, the so-called Long Lines, which will be 
discussed in the Appendix. 

Assuming second countability, prove the Classification Theorem for the non- 
compact case. Hint: Consider first the case without boundary. Let (UL), i = 1 2 ... 
be a countable covering of X by 0-sets and define a nested sequence (V/) of 0-sets 
inductively as follows. V1 = U1 and VJ+1 = Vn U Uk where k is the smallest 

0000 

subscript such that Uk meets V". Prove that V = U Vn = U Un = X (this is the 
n=1 n=1 

crucial step). Finally, define mappings An from Vn to R inductively as follows: 41 is 
an 0-mapping of V1. Now suppose On(Vn) = (a, b). Let On be an 0-mapping on 
V,+, such that An o An 1(a, b) = (a,/) and use this to define an extension of 4O'n to 
a mapping An+1 of Vn+l' 

For the case with boundary a slight modification of the above construction and 
argument is needed. 

Appendix: The Long Line. In order to show that second countability is necessary 
for the classification theorem we present here an example of a Hausdorff space 
which satisfies property (M) but is not second countable. 

For this section some familiarity with transfinite ordinals is required. Consider 
the set L of all pairs (a, x) where a is a countable ordinal and x E [0,1) and order 
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these pairs lexicographically, that is, (a, x) > (fl, y) if a > ,B or if a = 1l and 
x > y. It is easy to see that L is a Hausdorff space in the order topology. 

For each countable ordinal a define Ha = {(,8, x) E L113 <a}. 

PROPOSITION 4. Ha is an H-set. 

Granting Proposition 4, it follows at once that (M) is satisfied by the sets H so 
L is a manifold with boundary. However, it is not second countable because the 
{ Hj cannot be reduced to a countable covering. Namely, if { Ha }, 1, 2, ..., 
were such a covering, then any countable ordinal would be in some Ha, but there 
are only a countable number of ordinals in each Ha.. Hence U??iHa is a countable 
set, contradicting the fact that there are uncountably many countable ordinals. 

To prove Proposition 4 one must show that (i) Ha has the least upper bound 
property, and (ii) Ha has a countable dense subset. Both are easily proved. Finally 
one uses the fact that any set with properties (i) and (ii) is order-isomorphic to a real 
interval, in this case a half-open interval. This is not hard either. First map the 
rational points of [0, 1) order-isomorphically onto the countable dense subset and 
then extend [0, 1) using the least upper bound property. 
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The Error for Quadrature Methods: A Complex Variables Approach 
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By a quadrature method for integration over an interval [a, b], we mean a set of 
distinct points xo < xl < < xn, a set of constants a0,..., an, and a formula 

n 

(1) ~~~~~~Qn( (f) E of f (Xi) 
j=0 

that serves as an estimate of the integral 

f(x) dx. 
a 
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